首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   77篇
生物科学   883篇
  2023年   6篇
  2022年   7篇
  2021年   26篇
  2020年   17篇
  2019年   10篇
  2018年   16篇
  2017年   18篇
  2016年   31篇
  2015年   40篇
  2014年   61篇
  2013年   66篇
  2012年   63篇
  2011年   74篇
  2010年   43篇
  2009年   30篇
  2008年   44篇
  2007年   37篇
  2006年   31篇
  2005年   26篇
  2004年   31篇
  2003年   37篇
  2002年   25篇
  2001年   19篇
  2000年   17篇
  1999年   6篇
  1998年   8篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   7篇
  1991年   7篇
  1990年   2篇
  1989年   12篇
  1988年   5篇
  1987年   7篇
  1986年   6篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有883条查询结果,搜索用时 921 毫秒
31.
A specific symbiotic Bacillus sp. isolated from a rhabditid entomopathogenic nematode, Rhabditis (Oscheius) sp. was found to produce large number of bioactive compounds. The present study was conducted to determine the effect of carbon and nitrogen sources for the production of antimicrobial substances by Bacillus sp. The yield of the crude antimicrobial substances and antimicrobial activity against the test micro-organism also differed significantly when carbon and nitrogen sources in the fermentation media were changed. The antifungal activity was significantly high in yeast extract plus fructose (46.5?±?2.12?mm) followed by yeast extract plus maltose, beef extract plus fructose and meat infusion plus glucose. High pressure liquid chromatography analysis of the crude antimicrobial substances revealed different peaks with different retention time indicating that they produced different compounds. When the carbon source was not included in the fermentation media, the antimicrobial production was substantially reduced. The results indicate that carbon source in the fermentation media plays a vital role in the production of antifungal substances. It is concluded that yeast extract and fructose as nitrogen and carbon sources produced maximum activity, which can effectively control the blue mould caused by Penicillium expansum in apples and pears.  相似文献   
32.
Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1‐11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane‐spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O‐layer inserted in the outer membrane and the I‐layer inserted in the inner membrane. While the structure of the O‐layer has been solved by X‐ray crystallography, there is no detailed structural information on the I‐layer. Using high‐resolution cryo‐electron microscopy and molecular modelling combined with biochemical approaches, we determined the I‐layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived.  相似文献   
33.
The size of various tubes within tubular organs such as the lung, vascular system and kidney must be finely tuned for the optimal delivery of gases, nutrients, waste and cells within the entire organism. Aberrant tube sizes lead to devastating human illnesses, such as polycystic kidney disease, fibrocystic breast disease, pancreatic cystic neoplasm and thyroid nodules. However, the underlying mechanisms that are responsible for tube-size regulation have yet to be fully understood. Therefore, no effective treatments are available for disorders caused by tube-size defects. Recently, the Drosophila tracheal system has emerged as an excellent in vivo model to explore the fundamental mechanisms of tube-size regulation. Here, we discuss the role of the apical luminal matrix, cell polarity and signaling pathways in regulating tube size in Drosophila trachea. Previous studies of the Drosophila tracheal system have provided general insights into epithelial tube morphogenesis. Mechanisms that regulate tube size in Drosophila trachea could be well conserved in mammalian tubular organs. This knowledge should greatly aid our understanding of tubular organogenesis in vertebrates and potentially lead to new avenues for the treatment of human disease caused by tube-size defects.  相似文献   
34.
Abstract

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (M.tb) or tubercule bacillus, and H37Rv is the most studied clinical strain. The recent development of resistance to existing drugs is a global health-care challenge to control and cure TB. Hence, there is a critical need to discover new drug targets in M.tb. The members of peptidoglycan biosynthesis pathway are attractive target proteins for antibacterial drug development. We have performed in silico analysis of M.tb MraY (Rv2156c) integral membrane protein and constructed the three-dimensional (3D) structure model of M.tb MraY based on homology modeling method. The validated model was complexed with antibiotic muraymycin D2 (MD2) and was used to generate structure-based pharmacophore model (e-pharmacophore). High-throughput virtual screening (HTVS) of Asinex database and molecular docking of hits was performed to identify the potential inhibitors based on their mode of interactions with the key residues involved in M.tb MraY–MD2 binding. The validation of these molecules was performed using molecular dynamics (MD) simulations for two best identified hit molecules complexed with M.tb MraY in the lipid bilayer, dipalmitoylphosphatidyl-choline (DPPC) membrane. The results indicated the stability of the complexes formed and retained non-bonding interactions similar to MD2. These findings may help in the design of new inhibitors to M.tb MraY involved in peptidoglycan biosynthesis.  相似文献   
35.
Surplus male proboscis monkeys at the Singapore Zoo pose a considerable problem for maintenance and maximizing of exhibition potential. In 2008, a new exhibit was constructed to house and display a group of six proboscis monkey males born in Singapore Zoo. To document and monitor the all‐male group establishment in the new exhibit, we conducted observations on intragroup interactions between the monkeys, spatial use of their new exhibit, and visitor effects on their behavior. We found contact aggressive interactions between the monkeys to be consistently lower than noncontact aggressive interactions and by week six of introduction to the new exhibit, contact aggression was almost nonevident. Affiliative interactions also developed between individuals in the group, with an interface of aggressive and socioreconcilatory behavior influenced by food competition and a dominance hierarchy. This was evident from significantly higher overall aggression and affiliation during feeding times compared to nonfeeding times, and this was reduced when food competition was mitigated by modifying the feeding regime. We measured the groups’ spatial use of the exhibit and the relation to behavior, crowd size, and density. Our results showed that the proboscis monkeys utilized the available exhibit space, were largely unaffected by visitor crowd size and density, and were able to exhibit a variety of natural behaviors, including swimming. Our accomplishment in maintaining and displaying an all‐male group of proboscis monkeys in captivity provides viable options for more comprehensive captive management and breeding programs for this endangered species. Zoo Biol. 32:281‐290, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
36.
Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration.  相似文献   
37.
38.
39.
The Fn14 and TWEAK are the receptor and ligand respectively and their mutual recognition and binding was reported to induce pathogenesis of cancer and chronic autoimmune diseases. We had identified Fn14 as a novel target of low linear energy transfer (LET) ionizing radiation in mice population. In the present study we generated the novel homology model of human Fn14, optimized its energy and validated for authenticity by checking Ramachandran plot and also by calculating the RMSD. Based on our earlier findings with Hippophae rhamnoides, a group of flavonoids and tannins were screened for their docking potential with Fn14 at the site where its natural ligand TWEAK was binding. The comparative docking analysis showed that the order of docking, from best to least, was Genistein, Rutin, Gallic acid ethyl ester and Quercetin, respectively. The findings predicted the radiomodifying action of flavonoids and tannins. The study has immediate applications in development of non-toxic drugs/ nutraceuticals that may protect human population from harmful effects of radiation in various situations, such as nuclear accidents, occupational exposure, diagnosis or radiotherapy.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号